Definition of a Logarithm:

If *y = b ^{x}*, then the logarithm, to the base

*b*of a positive number is denoted by log

*and is defined by log*

_{b}y*.*

_{b}y = xAnd so, if 9 = 3^{2}, then the logarithm to the base 3 of 9 is defined by log_{3} 9 = 2.

DON’T BE INTIMIDATED BY LOGARITHMS! ! ! Use this flashcard drill to become a master of logarithm basics.

CLICK HERE TO PRACTICE LOGS WITH VARIABLES

- log
_{2}2 =1 - log
_{2}4 =2 - log
_{2}8 =3 - log
_{2}16 =4 - log
_{2}32 =5 - log
_{2}64 =6 - log
_{2}128 =7 - log
_{2}256 =8 - log
_{2}512 =9 - log
_{2}1024 =10 - log
_{3}9 =2 - log
_{3}27 =3 - log
_{3}81 =4 - log
_{3}243 =5 - log
_{3}729 =6 - log
_{3}2,187 =7 - log
_{4}16 =2 - log
_{4}64 =3 - log
_{4}256 =4 - log
_{4}10245 - log
_{5}25 =2 - log
_{5}125 =3 - log
_{5}625 =4 - log
_{5}3,125 =5 - log
_{2}(^{1}/_{4}) =-2 - log
_{2}(^{1}/_{8}) =-3 - log
_{2}(^{1}/_{16}) =-4 - log
_{2}(^{1}/_{32}) =-5 - log
_{3}(^{1}/_{9}) =-2 - log
_{3}(^{1}/_{27}) =-3 - log
_{3}(^{1}/_{81}) =-4 - log
_{3}(^{1}/_{243}) =-5 - log
_{4}(^{1}/_{16}) =-2 - log
_{5}(^{1}/_{25}) =-2

Use the form below to ask Fred more questions about logarithms.

**Error:** Contact form not found.